Abstract
Over the last decade, remarkable strides in incretin hormone biology have laid the
foundation for our more recent appreciation that GLP-1 not only regulates mature β-cell
function but also critically regulates β-cell differentiation, β-cell proliferation
and β-cell survival. Dysregulated β-cell growth and function are central to the pathophysiology
of both type 1 and type 2 diabetes. Thus, GLP-1 receptor agonists are being intensively
developed for the treatment of human diabetes and are likely to become available to
clinical use in the near future. A general overview of β-cell development will be
provided, with particular emphasis on recent contributions to our understanding of
pancreas and islet development during the embryonic, fetal and neonatal periods. The
transcriptional hierarchy and extracellular signals governing events during these
periods will be highlighted. Evidence suggesting a role for endogenous GLP-1 and GLP-1
receptor during β-cell development will be reviewed. Finally, the therapeutic potential
for intervention with GLP1 receptor agonists during the neonatal period will be discussed.
Key words
Exendin-4 · Transcription · Neogenesis · Islet · PDX · Diabetes · Regeneration
References
1
Kahn S E.
The importance of beta-cell failure in the development and progression of type 2 diabetes.
J Clin Endocrinol Metab.
2001;
86
4047-4058
2
Kahn S E.
The relative contributions of insulin resistance and beta-cell dysfunction to the
pathophysiology of Type 2 diabetes.
Diabetologia.
2003;
46
3-19
3
Butler A E, Janson J, Bonner-Weir S, Ritzel R, Rizza R A, Butler P C.
Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes.
Diabetes.
2003;
52
102-110
4
Kieffer T J, Habener J F.
The glucagon-like peptides.
Endocr Rev.
1999;
20
876-913
5
Nielsen L L, Young A A, Parkes D G.
Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved
glycemic control of type 2 diabetes.
Regul Pept.
2004;
117
77-88
6
Kolterman O G, Buse J B, Fineman M S, Gaines E, Heintz S, Bicsak T A, Taylor K, Kim D,
Aisporna M, Wang Y, Baron A D.
Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma
glucose in subjects with type 2 diabetes.
J Clin Endocrinol Metab.
2003;
88
3082-3089
7
List J F, Habener J F.
Glucagon-like peptide 1 agonists and the development and growth of pancreatic beta-cells.
Am J Physiol Endocrinol Metab.
2004;
286
E875-E881
8
MacDonald P E, El-kholy W, Riedel M J, Salapatek A MF, Light P E, Wheeler M B.
The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion.
Diabetes.
2002;
51
S434-S442
9
Holz G G.
Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated
signal transduction in the pancreatic beta-cell.
Diabetes.
2004;
53
5-13
10
Stoffers D A, Desai B M, DeLeon D D, Simmons R A.
Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth
retarded rat.
Diabetes.
2003;
52
734-740
11
Stoffers D A, Kieffer T J, Hussain M A, Drucker D J, Bonner-Weir S, Habener J F, Egan J M.
Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain
protein IDX-1 and increase islet size in mouse pancreas.
Diabetes.
2000;
49
741-748
12
Movassat J, Beattie G M, Lopez A D, Hayek A.
Exendin 4 up-regulates expression of PDX 1 and hastens differentiation and maturation
of human fetal pancreatic cells.
J Clin Endocrinol Metab.
2002;
87
4775-4781
13
Abraham E J, Leech C A, Lin J C, Zulewski H, Habener J F.
Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic
islet-derived progenitor cells into insulin-producing cells.
Endocrinology.
2002;
143
3152-3161
14
Zhou J, Pineyro M A, Wang X, Doyle M E, Egan J M.
Exendin-4 differentiation of a human pancreatic duct cell line into endocrine cells:
involvement of PDX-1 and HNF3beta transcription factors.
J Cell Physiol.
2002;
192
304-314
15
Wang X, Cahill C M, Pineyro M A, Zhou J, Doyle M E, Egan J M.
Glucagon-like peptide-1 regulates the beta cell transcription factor, PDX-1, in insulinoma
cells.
Endocrinology.
1999;
140
4904-4907
16
Hui H, Wright C V, Perfetti R.
Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive
pancreatic ductal cells into insulin-secreting cells.
Diabetes.
2001;
50
785-796
17
Stoffers D A, Thomas M K, Habener J F.
Homeodomain protein IDX-1: a master regulator of pancreas development and insulin
gene expression.
Trends in Endocrinology and Metabolism.
1997;
8
145-151
18
Melloul D.
Transcription factors in islet development and physiology: role of PDX-1 in beta-cell
function.
Ann N Y Acad Sci.
2004;
1014
28-37
19
Jhala U S, Canettieri G, Screaton R A, Kulkarni R N, Krajewski S, Reed J, Walker J,
Lin X, White M F, Montminy M.
cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2.
Genes Dev.
2003;
17
1575-1580
20
Prado C L, Pugh-Bernard A E, Elghazi L, Sosa-Pineda B.
Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas
development.
Proc Natl Acad Sci USA.
2004;
101
2924-2929
21
Bonner-Weir S, Baxter L A, Schuppin G T, Smith F E.
A second pathway for regeneration of adult exocrine and endocrine pancreas: A possible
recapitulation of embryonic development.
Diabetes.
1993;
42
1715-1720
22
Bonner-Weir S.
Regulation of pancreatic beta-cell mass in vivo .
Recent Prog Horm Res.
1994;
49
91-104
23
Scaglia L, Cahill C J, Finegood D T, Bonner-Weir S.
Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal
rat.
Endocrinology.
1997;
138
1736-1741
24
Petrik J, Arany E, McDonald T J, Hill D J.
Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced
expression of insulin-like growth factor II that may act as a survival factor.
Endocrinology.
1998;
139
2994-3004
25
Finegood D T, Scaglia L, Bonner-Weir S.
Dynamics of β-cell mass in the growing rat pancreas: Estimation with a simple mathematical
model.
Diabetes.
1995;
44
249-256
26
Kim S K, MacDonald R J.
Signaling and transcriptional control of pancreatic organogenesis.
Curr Opin Genet Dev.
2002;
12
540-547
27
Jensen J.
Gene regulatory factors in pancreatic development.
Dev Dyn.
2004;
229
176-200
28
Murtaugh L C, Melton D A.
Genes, signals, and lineages in pancreas development.
Annu Rev Cell Dev Biol.
2003;
19
71-89
29
Wilson M E, Scheel D W, German M S.
Gene expression cascades in pancreatic development.
Mech Dev.
2003;
120
65-80
30
Lammert E, Brown J, Melton D A.
Notch gene expression during pancreatic organogenesis.
Mech Dev.
2000;
94
199-203
31
Leonard J, Peers B, Johnson T, Ferreri K, Lee S, Montminy M R.
Characterization of somatostatin transactivating factor-1, a novel homeobox factor
that stimulates somatostatin expression in pancreatic islet cells.
Mol Endocrinol.
1993;
7
1275-1283
32
Marshak S, Totary H, Cerasi E, Melloul D.
Purification of the beta-cell glucose-sensitive factor that transactivates the insulin
gene differentially in normal and transformed islet cells.
Proc Natl Acad Sci USA.
1996;
93
15057-15062
33
Miller C P, McGehee R, Habener J F.
IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and
duodenum that transactivates the somatostatin gene.
EMBO J.
1994;
13
1145-1156
34
Ohlsson H, Karlsson K, Edlund T.
IPF1, a homeodomain-containing transactivator of the insulin gene.
EMBO J.
1993;
12
4251-4259
35
Wright C, Schnegelsberg P, De Robertis E.
X1hbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm.
Development.
1989;
105
787-794
36
Edlund H.
Transcribing Pancreas.
Diabetes.
1998;
47
1817-1823
37
Offield M F, Jetton T L, Labosky P A, Ray M, Stein R W, Magnuson M A, Hogan B LM,
Wright C VE.
PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum.
Development.
1996;
122
983-995
38
Jonsson J, Carlsson L, Edlund T, Edlund H.
Insulin-promoter-factor 1 is required for pancreas development in mice.
Nature.
1994;
371
606-609
39
Stoffers D A, Zinkin N T, Stanojevic V, Clarke W L, Habener J F.
Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 coding region.
Nature Genetics.
1997;
15
106-110
40
Macfarlane W M, Frayling T M, Ellard S, Evans J C, Allen L I, Bulman M P, Ayres S,
Shepherd M, Clark P, Millward A, Demaine A, Wilkin T, Docherty K, Hattersley A T.
Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes.
J Clin Invest.
1999;
104
R33-R39
41
Hani E H, Stoffers D A, Chevre J C, Durand E, Stanojevic V, Dina C, Habener J F, Froguel P.
Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type
2 diabetes mellitus.
J Clin Invest.
1999;
104
R41-R48
42
Stoffers D A, Ferrer J, Clarke W L, Habener J F.
Early-onset type-II diabetes mellitus (MODY4) linked to IPF-1.
Nature Genetics.
1997;
17
138-139
43
Johnson J D, Ahmed N T, Luciani D S, Han Z, Tran H, Fujita J, Misler S, Edlund H,
Polonsky K S.
Increased islet apoptosis in Pdx1+/-mice.
J Clin Invest.
2003;
111
1147-1160
44
Dutta S, Bonner-Weir S, Montminy M, Wright C V.
Regulatory factor linked to late-onset diabetes?.
Nature.
1998;
392
560
45
Brissova M, Shiota M, Nicholson W E, Gannon M, Knobel M S, Piston D W, Wright C V,
Powers A C.
Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin
secretion.
J Biol Chem.
2002;
277
11225-11232
46
Thomas M, Devon O, Lee J, Peter A, Schlosser D, Tenser M, Habener J.
Development of diabetes mellitus in aging transgenic mice following suppression of
pancreatic homeoprotein IDX-1.
J Clin Invest.
2001;
108
319-329
47
Holland A, Hale M, Kagami H, Hammer R, MacDonald R.
Experimental control of pancreatic development and maintenance.
Proc Natl Acad Sci USA.
2002;
99
12236-12241
48
Peers B, Sharma S, Johnson T, Kamps M, Montminy M.
The pancreatic islet factor STF-1 binds cooperatively with Pbx to regulatory element
in the somatostatin promoter: importance of the FPWMK motif and of the homeodomain.
Mol Cell Biol.
1995;
15
7091-7097
49
Dutta S, Gannon M, Peers B, Wright C V, Bonner-Weir S, Montminy M.
PDX: PBX complexes are required for normal proliferation of pancreatic cells during
development.
Proc Natl Acad Sci USA.
2001;
98
1065-1070
50
Kim S K, Selleri L, Lee J S, Zhang A Y, Gu X, Jacobs Y, Cleary M L.
Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes
diabetes mellitus.
Nat Genet.
2002;
30
430-435
51
Gerrish K, Gannon M, Shih D, Henderson E, Stoffel M, Wright C V, Stein R.
Pancreatic beta cell-specific transcription of the pdx-1 gene. The role of conserved
upstream control regions and their hepatic nuclear factor 3beta sites.
J Biol Chem.
2000;
275
3485-3492
52
Marshak S, Benshushan E, Shoshkes M, Havin L, Cerasi E, Melloul D.
Functional conservation of regulatory elements in the pdx-1 gene: PDX-1 and hepatocyte
nuclear factor 3beta transcription factors mediate beta-cell-specific expression.
Mol Cell Biol.
2000;
20
7583-7590
53
Sharma S, Leonard J, Lee S, Chapman H D, Leiter E H, Montminy M R.
Pancreatic islet expression of the homeobox factor STF-1 relies on an E-box motif
that binds USF.
J Biol Chem.
1996;
271
2294-2299
54
Sharma S, Jhala U, Johnson T, Ferreri K, Leonard J, Montminy M.
Hormonal regulation of an islet-specific enhancer in the pancreatic homeobox gene
STF-1.
Mol Cell Bio.
1997;
17
2598-2604
55
Jacquemin P, Lemaigre F P, Rousseau G G.
The Onecut transcription factor HNF-6 (OC-1) is required for timely specification
of the pancreas and acts upstream of Pdx-1 in the specification cascade.
Dev Biol.
2003;
258
105-116
56
Hussain M A, Habener J F.
Glucagon-like peptide 1 increases glucose-dependent activity of the homeoprotein IDX-1
transactivating domain in pancreatic beta-cells.
Biochem Biophys Res Commun.
2000;
274
616-619
57
Wang X, Zhou J, Doyle M E, Egan J M.
Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation
from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein
kinase A-dependent mechanism.
Endocrinology.
2001;
142
1820-1827
58
Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, Hagenbuchle O, Wellauer P K.
The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct
spatial organization of the endocrine pancreas.
Genes Dev.
1998;
12
3752-3763
59
Krapp A, Knofler M, Frutiger S, Hughes G J, Hagenbuchle O, Wellauer P K.
The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific
basic helix-loop-helix protein.
EMBO J.
1996;
15
4317-4329
60
Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald R J, Wright C V.
The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic
progenitors.
Nat Genet.
2002;
32
128-134
61
Gradwohl G, Dierich A, LeMeur M, Guillemot F.
Neurogenin 3 is required for the development of the four endocrine cell lineages of
the pancreas.
Proc Natl Acad Sci USA.
2000;
97
1607-1611
62
Huang H P, Liu M, El-Hodiri H M, Chu K, Jamrich M, Tsai M J.
Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3.
Mol Cell Biol.
2000;
20
3292-3307
63
Apelqvist A, Li H, Sommer L, Beatus P, Anderson D J, Honjo T, Hrabe d e, Lendahl U,
Edlund H.
Notch signalling controls pancreatic cell differentiation.
Nature.
1999;
400
877-881
64
Jensen J, Pedersen E E, Galante P, Hald J, Heller R S, Ishibashi M, Kageyama R, Guillemot F,
Serup P, Madsen O D.
Control of endodermal endocrine development by Hes-1.
Nat Genet.
2000;
24
36-44
65
Schwitzgebel V M, Scheel D W, Conners J R, Kalamaras J, Lee J E, Anderson D J, Sussel L,
Johnson J D, German M S.
Expression of neurogenin3 reveals an islet cell precursor population in the pancreas.
Development.
2000;
127
3533-3542
66
Harrison K A, Thaler J, Pfaff S L, Gu H, Kehrl J H.
Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient
mice.
Nat Genet.
1999;
23
71-75
67
Li H, Arber S, Jessell T M, Edlund H.
Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9.
Nat Genet.
1999;
23
67-70
68
Ahlgren U, Pfaff S L, Jessell T M, Edlund T, Edlund H.
Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells.
Nature.
1997;
385
257-260
69
Sander M, Sussel L, Conners J R, Scheel D W, Kalamaras J, Dela Cruz F, Schwitzgebel V M,
Hayes-Jordan A, German M.
Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation
in the pancreas.
Development.
2000;
127
5533-5540
70
Sussel L, Kalamaras J, Hartigan-O’Connor D J, Meneses J J, Pedersen R A, Rubenstein J L,
German M S.
Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested
differentiation of pancreatic beta cells.
Development.
1998;
125
2213-2221
71
Sosa-Pineda B, Chowdhury K, Torres M, Gruss P.
The Pax4 gene is essential for differentiation of insulin-producing β cells in the
mammalian pancreas.
Nature.
1997;
386
399-402
72
St. Onge L, Sosa-Pineda B, Chowdhury K, Gruss P.
Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas.
Nature.
1997;
387
406-409
73
Kataoka K, Han S I, Shioda S, Hirai M, Nishizawa M, Handa H.
MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator
for the insulin gene.
J Biol Chem.
2002;
277
49903-49910
74
Olbrot M, Rud J, Moss L G, Sharma A.
Identification of beta-cell-specific insulin gene transcription factor RIPE3b1 as
mammalian MafA.
Proc Natl Acad Sci USA.
2002;
99
6737-6742
75
Matsuoka T A, Zhao L, Artner I, Jarrett H W, Friedman D, Means A, Stein R.
Members of the large Maf transcription family regulate insulin gene transcription
in islet beta cells.
Mol Cell Biol.
2003;
23
6049-6062
76
Matsuoka T A, Artner I, Henderson E, Means A, Sander M, Stein R.
The MafA transcription factor appears to be responsible for tissue-specific expression
of insulin.
Proc Natl Acad Sci USA.
2004;
101
2930-2933
77
Deutsch G, Jung J, Zheng M, Lora J, Zaret K S.
A bipotential precursor population for pancreas and liver within the embryonic endoderm.
Development.
2001;
6
871-881
78
Bort R, Martinez-Barbera J P, Beddington R S, Zaret K S.
Hex homeobox gene-dependent tissue positioning is required for organogenesis of the
ventral pancreas.
Development.
2004;
131
797-806
79
Lammert E, Cleaver O, Melton D.
Induction of pancreatic differentiation by signals from blood vessels.
Science.
2001;
294
564-567
80
Yoshitomi H, Zaret K S.
Endothelial cell interactions initiate dorsal pancreas development by selectively
inducing the transcription factor Ptf1a.
Development.
2004;
131
807-817
81
Herrera P L.
Adult insulin-and glucagon-producing cells differentiate from two independent cell
lineages.
Development.
2000;
127
2317-2322
82
Bonner-Weir S.
Perspective: Postnatal pancreatic beta cell growth.
Endocrinology.
2000;
141
1926-1929
83
Bonner-Weir S, Trent D F, Honey R N, Weir G C.
Responses of neonatal rat islets to streptozotocin: limited B-cell regeneration and
hyperglycemia.
Diabetes.
1981;
30
64-69
84
Porter S E, Sorenson R L, Dann P, Garcia-Ocana A, Stewart A F, Vasavada R C.
Progressive pancreatic islet hyperplasia in the islet-targeted, parathyroid hormone-related
protein-overexpressing mouse.
Endocrinology.
1998;
139
3743-3751
85 Pictet R, Rutter W J. Development of the embryonic endocrine pancreas. Handbook
of Physiology Vol. 1. D. F. Steiner and N. Freinkel (eds.) Washington DC; American
Physiology Society 1972: 25-66
86
Bonner-Weir S, Taneja M, Weir G C, Tatarkiewicz K, Song K H, Sharma A, O’Neil J J.
In vitro cultivation of human islets from expanded ductal tissue.
Proc Natl Acad Sci USA.
2000;
97
7999-8004
87
Zulewski H, Abraham E J, Gerlach M J, Daniel P B, Moritz W, Muller B, Vallejo M, Thomas M K,
Habener J F.
Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate
ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes.
Diabetes.
3002;
50
521-533
88
Humphrey R K, Bucay N, Beattie G M, Lopez A D, Messam C A, Cirulli V, Hayek A.
Characterization and isolation of promoter-defined nestin-positive cells from the
human fetal pancreas.
Diabetes.
2003;
52
2519-2525
89
Treutelaar M K, Skidmore J M, Dias-Leme C L, Hara M, Zhang L, Simeone D, Martin D M,
Burant C F.
Nestin-lineage cells contribute to the microvasculature but not endocrine cells of
the islet.
Diabetes.
2003;
52
2503-2512
90
Lardon J, Rooman I, Bouwens L.
Nestin expression in pancreatic stellate cells and angiogenic endothelial cells.
Histochem Cell Biol.
2002;
117
535-540
91
Klein T, Ling Z, Heimberg H, Madsen O D, Heller R S, Serup P.
Nestin is expressed in vascular endothelial cells in the adult human pancreas.
J Histochem Cytochem.
2003;
51
697-706
92
Street C N, Lakey J R, Seeberger K, Helms L, Rajotte R V, Shapiro A M, Korbutt G S.
Heterogeneous expression of nestin in human pancreatic tissue precludes its use as
an islet precursor marker.
J Endocrinol.
2004;
180
213-225
93
Bertelli E, Bendayan M.
Intermediate endocrine-acinar pancreatic cells in duct ligation conditions.
Am J Physiol.
1997;
273
C1641-C1649
94
Bouwens L.
Transdifferentiation versus stem cell hypothesis for the regeneration of islet beta-cells
in the pancreas.
Microsc Res Tech.
1998;
43
332-336
95
Lipsett M, Finegood D T.
Beta-cell neogenesis during prolonged hyperglycemia in rats.
Diabetes.
2002;
51
1834-1841
96
Rooman I, Heremans Y, Heimberg H, Bouwens L.
Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1
in vitro.
Diabetologia.
2000;
43
907-914
97
Hardikar A A, Marcus-Samuels B, Geras-Raaka E, Raaka B M, Gershengorn M C.
Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing
islet-like cell aggregates.
Proc Natl Acad Sci USA.
2003;
100
7117-7122
98
Mashima H, Shibata H, Mine T, Kojima I.
Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte
growth factor.
Endocrinology.
1996;
137
3969-3976
99
Mashima H, Ohnishi H, Wakabayashi K, Mine T, Miyagawa J, Hanafusa T, Seno M, Yamada H,
Kojima I.
Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J
cells into insulin-secreting cells.
J Clin Invest.
1996;
97
1647-1654
100
Zhou J, Wang X, Pineyro M A, Egan J M.
Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon-and
insulin-producing cells.
Diabetes.
1999;
48
2358-2366
101
Palgi J, Stumpf E, Otonkoski T.
Transcription factor expression and hormone production in pancreatic AR42J cells.
Mol Cell Endocrinol.
2000;
165
41-49
102
Mathews V, Hanson P T, Ford E, Fujita J, Polonsky K S, Graubert T A.
Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell
injury.
Diabetes.
2004;
53
91-98
103
Ianus A, Holz G G, Theise N D, Hussain M A.
In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow
without evidence of cell fusion.
J Clin Invest.
2003;
111
843-850
104
Choi J B, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, Migita M, Shimada T,
Kawamori R, Watada H.
Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic
beta cells.
Diabetologia.
2003;
46
1366-1374
105
Lechner A, Yang Y G, Blacken R A, Wang L, Nolan A L, Habener J F.
No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells
in vivo.
Diabetes.
2004;
53
616-623
106
Hess D, Li L, Martin M, Sakano S, Hill D J, Strutt B, Thyssen S, Gray D A, Bhatia M.
Bone marrow-derived stem cells initiate pancreatic regeneration.
Nat Biotechnol.
2003;
21
763-770
107
Wagers A J, Weissman I L.
Plasticity of adult stem cells.
Cell.
2004;
116
639-648
108
Dor Y, Brown J, Martinez O I, Melton D A.
Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation.
Nature.
2004;
429
41-46
109
Zaret K.
Regenerative medicine: Self-help for insulin cells.
Nature.
2004;
429
30-31
110
Brubaker P L, Drucker D J.
Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the
pancreas, gut, and central nervous system.
Endocrinology.
2004;
145
2653-2659
111
Scrocchi L A, Brown T J, MacLusky N, Brubaker P L, Auerbach A B, Joyner A L, Drucker D J.
Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like
peptide 1 receptor gene.
Nature Med.
1996;
2
1254-1258
112
Ling Z, Wu D, Zambre Y, Flamez D, Drucker D J, Pipeleers D, Schuit F.
Glucagon-like peptide 1 receptor signaling influences topography of islet cells in
mice.
Virchows Arch.
2001;
438
382-387
113
Pederson R A, Satkunarajah M, McIntosh C H, Scrocchi L A, Flamez D, Schuit F, Drucker DJ,
Wheeler M B.
Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic
action in glucagon-like peptide 1 receptor-/-mice.
Diabetes.
1998;
47
1046-1052
114
Wilson M E, Kalamaras J A, German M S.
Expression pattern of IAPP and prohormone convertase 1/3 reveals a distinctive set
of endocrine cells in the embryonic pancreas.
Mech Dev.
2002;
115
171-176
115
Prasadan K, Daume E, Preuett B, Spilde T, Bhatia A, Kobayashi H, Hembree M, Manna P,
Gittes G K.
Glucagon is required for early insulin-positive differentiation in the developing
mouse pancreas.
Diabetes.
2002;
51
3229-3236
116
Hardikar A A, Wang X Y, Williams L J, Kwok J, Wong R, Yao M, Tuch B E.
Functional maturation of fetal porcine beta-cells by glucagon-like peptide 1 and cholecystokinin.
Endocrinology.
2002;
143
3505-3514
117
Kreymann B, Ghatei M A, Domin J, Kanse S, Bloom S R.
Developmental patterns of glucagon-like peptide-1-(7-36) amide and peptide-YY in rat
pancreas and gut.
Endocrinology.
1991;
129
1001-1005
118
Srinivasan M, Laychock S G, Hill D J, Patel M S.
Neonatal nutrition: metabolic programming of pancreatic islets and obesity.
Exp Biol Med.
2003;
228
15-23
119
Xu G, Stoffers D A, Habener J F, Bonner-Weir S.
Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased
beta-cell mass and improved glucose tolerance in diabetic rats.
Diabetes.
1999;
48
2270-2276
120
De Leon D D, Deng S, Madani R, Ahima R S, Drucker D J, Stoffers D A.
Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy.
Diabetes.
2003;
52
365-371
121
Nie Y, Nakashima M, Brubaker P L, Li Q L, Perfetti R, Jansen E, Zambre Y, Pipeleers D,
Friedman T C.
Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide
1 in diabetic rats.
J Clin Invest.
2000;
105
955-965
122
Movassat J, Saulnier C, Serradas P, Portha B.
Impaired development of pancreatic beta-cell mass is a primary event during the progression
to diabetes in the GK rat.
Diabetologia.
1997;
40
916-925
123
Tourrel C, Bailbe D, Lacorne M, Meile M J, Kergoat M, Portha B.
Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion
of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or
exendin-4.
Diabetes.
2002;
51
1443-1452
124
Tourrel C, Bailbe D, Meile M J, Kergoat M, Portha B.
Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated
newborn rats resulting in persistently improved glucose homeostasis at adult age.
Diabetes.
2001;
50
1562-1570
125
Simmons R A, Templeton L, Gertz S, Niu H.
Intrauterine growth retardation leads to type II diabetes in adulthood in the rat.
Diabetes.
2002;
50
2279-2286
126
Vuguin P, Raab B, Yang X, Biu L, Barzilai N, Stoffers D A, Simmons R A.
Exendin-4 decreases body weight and improves insulin action in intrauterine growth
retarded rats.
Society for Pediatric Research.
2003;
Abstract
804
D. A. Stoffers, M.D., Ph.D.
Clinical Research Building 611 B, Department of Medicine, University of Pennsylvania
School of Medicine
415 Curie Boulevard · Philadelphia, Pennsylvania 19104-4399 · USA ·
Phone: +1 (215) 573-5413
Fax: +1 (215) 898-5408
Email: stoffers@mail.med.upenn.edu